$$3S_r + 2S_m = \sigma$$
, where $\sigma \le \sigma_u$, for 10^6 cycles life (74)

[Equation (9) in the previous analyses], must be limited by the yield strength, σ_y , for large mean stresses as shown in Figure 62, i.e.

$$2S_{\max} = 2S_r + 2S_m \le \sigma_y \tag{75}$$

A conservative shear-fatigue relation is the following:

$$\left(\frac{3\sigma_y}{\sigma_u}\right)S_r + 2S_m = \sigma_y$$
, for 10⁶ cycles life (76)

Relation (76) is also shown in Figure 62. [The coefficient $A_n = 3$ in Equations (74) and (76) is taken from data in Reference (35) as indicated earlier on page 164.]

The significance of the limit $S_m = 0$ [used in conjunction with Equation (7) on page 163] is now pointed out. S_m at the bore is related to $(\sigma_{\theta})_m$ as follows:

$$S_{m} = \frac{(\sigma_{\theta})_{m}}{2} + \frac{(p_{0} - q_{0})}{4} = \frac{(\sigma_{\theta})_{m}}{2} + \frac{p_{0}}{4} \text{ for } q_{0} = 0 .$$

Thus,

$$(\sigma_{\theta})_{m} = -\frac{p_{0}}{2} \text{ for } S_{m} = 0 \quad . \tag{77}$$

For a multiring container it was found that $\left((p_0)_{\max} \approx \sigma_u \text{ for } \alpha_r = \frac{(\sigma_\theta)_r}{\sigma_u} = 0.5, \alpha_m = 0.5\right)$

 $\frac{(\sigma_{\theta})_{m}}{\sigma_{u}} = -0.5 \text{ for } 10^{4} - 10^{5} \text{ cycles life}$. Therefore, the maximum tensile strength fatigue criterion with $\alpha_{r} = 0.5$, $\alpha_{m} = -0.5$ is equivalent to $S_{m} = 0$ for the shear strength criterion.

Coefficients A_n and B_n in Equation (73a) are now calculated for the tensile criterion postulated for high-strength steels ($\sigma_u \ge 250,000$ psi) from the fatigue data given in Table XLII and XLIII. These data are as follows in terms of α_r and α_m :

	Semirange Parameter, α_r		
Fatigue Life, cycles	for $\alpha_m = 0$	for $\alpha_r = \alpha_m$	
$10^{4} - 10^{5}$	0.50	0.35	
106-107	0.35	0.25	

Thus, for $0 \le \alpha_m \le \alpha_r$ (zero to a positive mean stress) the coefficients A_n and B_n are calculated to be:

Fatigue Life, cycles	An	Bn
$10^{4} - 10^{5}$	2.00	0.86
106-107	2.86	1.14

For, $-\alpha_r \le \alpha_m \le 0$, in leiu of actual data, the fatigue relation (73a) is assumed to be horizontal (Figure 61), i.e., $B_n = 0$ with $A_n = 2.00$ and $A_n = 2.86$ for 10^4 - 10^5 and 10^6 - 10^7 cycles life, respectively.

General Analysis of Multiring Containers

A multiring container or a multiring unit of a two-unit container such as has been shown in Figure 40, is assumed to have pressures fluctuating between q_0 and p_0 in the bore and between q_N and p_N on the outside diameter. Minimum stresses during the cycle occur at pressure preloadings q_0 and q_N , and maximum stresses occur at operatingpressure loadings of p_0 and p_N . (The pressures q_N and p_N are the so called "fluidsupport pressures".) The generalized fatigue criteria (73a, b) are used. The elasticity solutions for the stress components in Equations (73a, b) are as follows:

$$(\sigma_{\theta})_{\mathbf{r}} = \frac{1}{2(k_{n}^{2} - 1)} \left[(p_{n-1} - q_{n-1})(k_{n}^{2} + 1) - 2(p_{n} - q_{n})k_{n}^{2} \right], \quad (78a, b)$$

$$(\sigma_{\theta})_{m} = \frac{1}{2(k_{n}^{2} - 1)} \left[(p_{n-1} + q_{n-1})(k_{n}^{2} + 1) - 2(p_{n} + q_{n})k_{n}^{2} \right], \quad (79a, b)$$

$$k_{n}^{2}$$

$$S_r = \frac{\kappa_n}{2(k_n^2 - 1)} [(p_{n-1} - p_n) - (q_{n-1} - q_n)]$$

The p_n are related to the q_n as follows:

$$\mathbf{p}_{\mathbf{n}} = \mathbf{q}_{\mathbf{n}} + (-\sigma_{\mathbf{rn}}) \quad , \tag{80a}$$

(80b)

where

$$\sigma_{rn} = \frac{(p_0 - q_0)}{(K^2 - 1)} (1 - k_{n+1}^2 k_{n+2}^2 \dots k_N^2)$$

$$\frac{(\mathbf{p}_{N} - \mathbf{q}_{N})}{(\mathbf{K}^{2} - 1)} (\mathbf{K}^{2} - \mathbf{k}_{n+1}^{2} \mathbf{k}_{n+2}^{2} \dots \mathbf{k}_{N}^{2}) , n = 1, 2, \dots, N-1$$

There are (2N-1) unknowns: N pressures p_n , (n = 0, 1, ..., N-1) and N-1 pressure q_n , n = 1, 2, ..., N-1. (Determining p_0 the bore pressure determines the pressure capability.) There are also (2N-1) equations: N equations from Equations (73a) or (79b) for rings n = 1, 2, ..., N and (N-1) equations from Equation (80a). Therefore a solution is tractable.

This analysis was programmed into a computer code, Program MULTIR (abbreviation for multiring), for Battelle's 3400 and 6400 CDC computers. Results are given later when specific designs are discussed. First, the influence of "fluid-support pressures" q_N and p_N is studied by considering the example of a fatigue shear strength design.